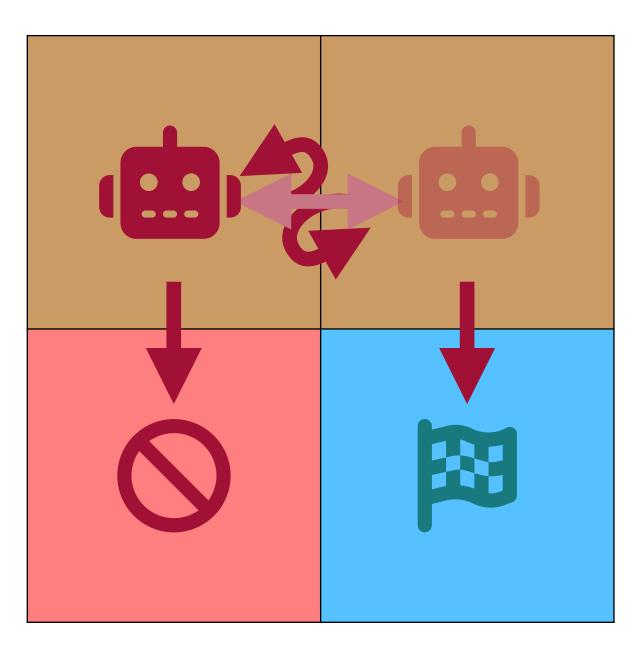
Current MOVES in Probabilistic **Nodel Checking**

JPK 60 / Alumni Day Tim Quatmann

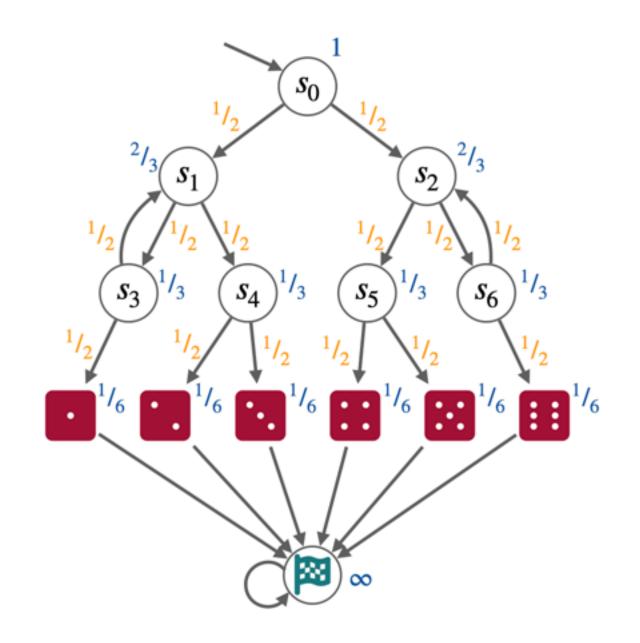
Alexander Bork, Hannah Mertens, Tobais Winkler



Tim Quatmann Current MOVES in Probabilistic Model Checking

"Randomization is a key element in sequential and distributed computing.

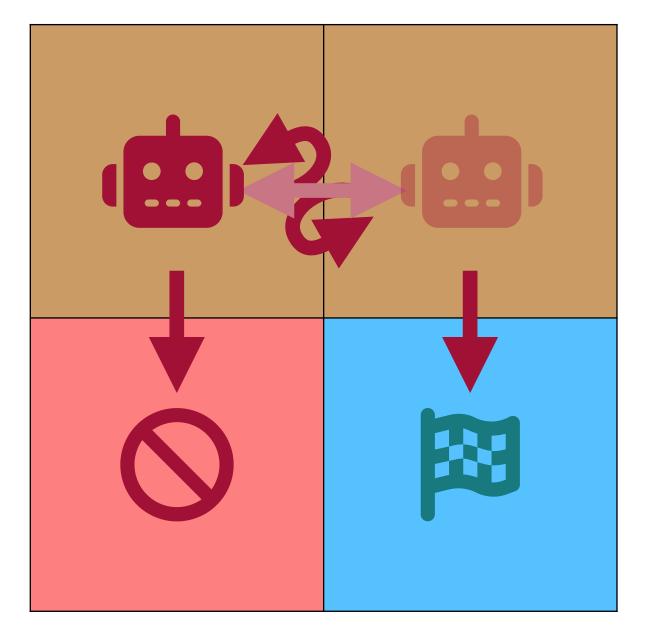
Reasoning about randomized algorithms is highly non-trivial."



Upper bounds on minimal reachabi $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \le x$ Upper bounds on maximal reachabi $x \in [0, 1]^S$ $\mathcal{B}^{\max}(x) \leq x$ Lower bounds on minimal reachabil $\mathcal{B}^{\min}(x) \ge x$ $x \in [0, 1]^2$ $\mathcal{D}^{\max}(r) \leq r$ $x(s) > 0 \implies r(s) < \infty$ Lower bounds on maximal reachabi $\mathcal{B}^{\max}(x) \ge x$ $x \in [0, 1]^S$ $r \in \overline{\mathbb{N}}^{\mathbb{Z}}$ $\mathcal{D}_{x\uparrow}^{\min}(r) \le r$ $x(s) > 0 \implies r(s) < \infty$

Expected **Visiting Times**

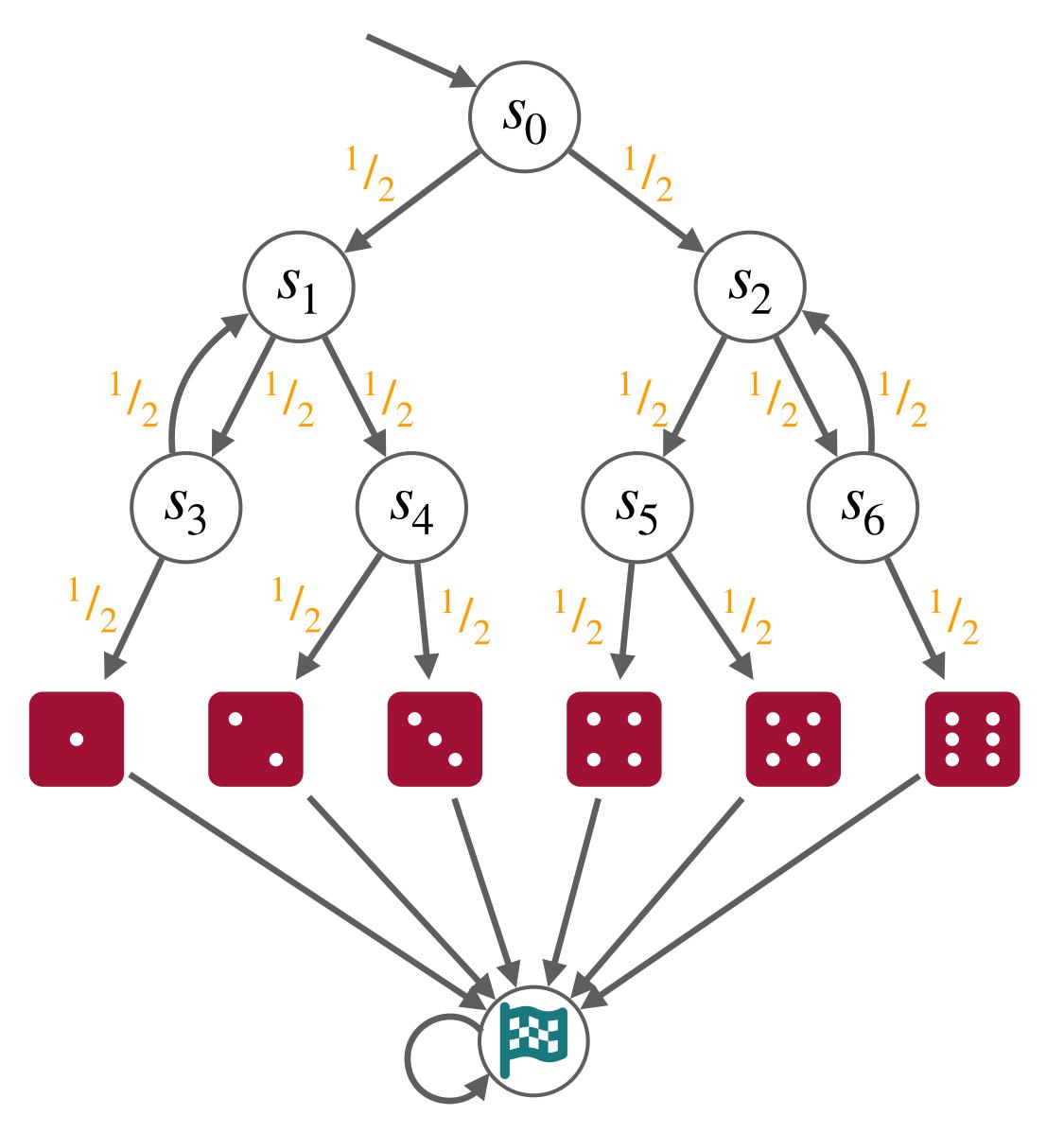
Tim Quatmann Current *MOVES* in Probabilistic Model Checking



Certificates

Partially **Observable MDPS**

Kuth-Yao's Dice



Tim Quatmann Current MOVES in Probabilistic Model Checking

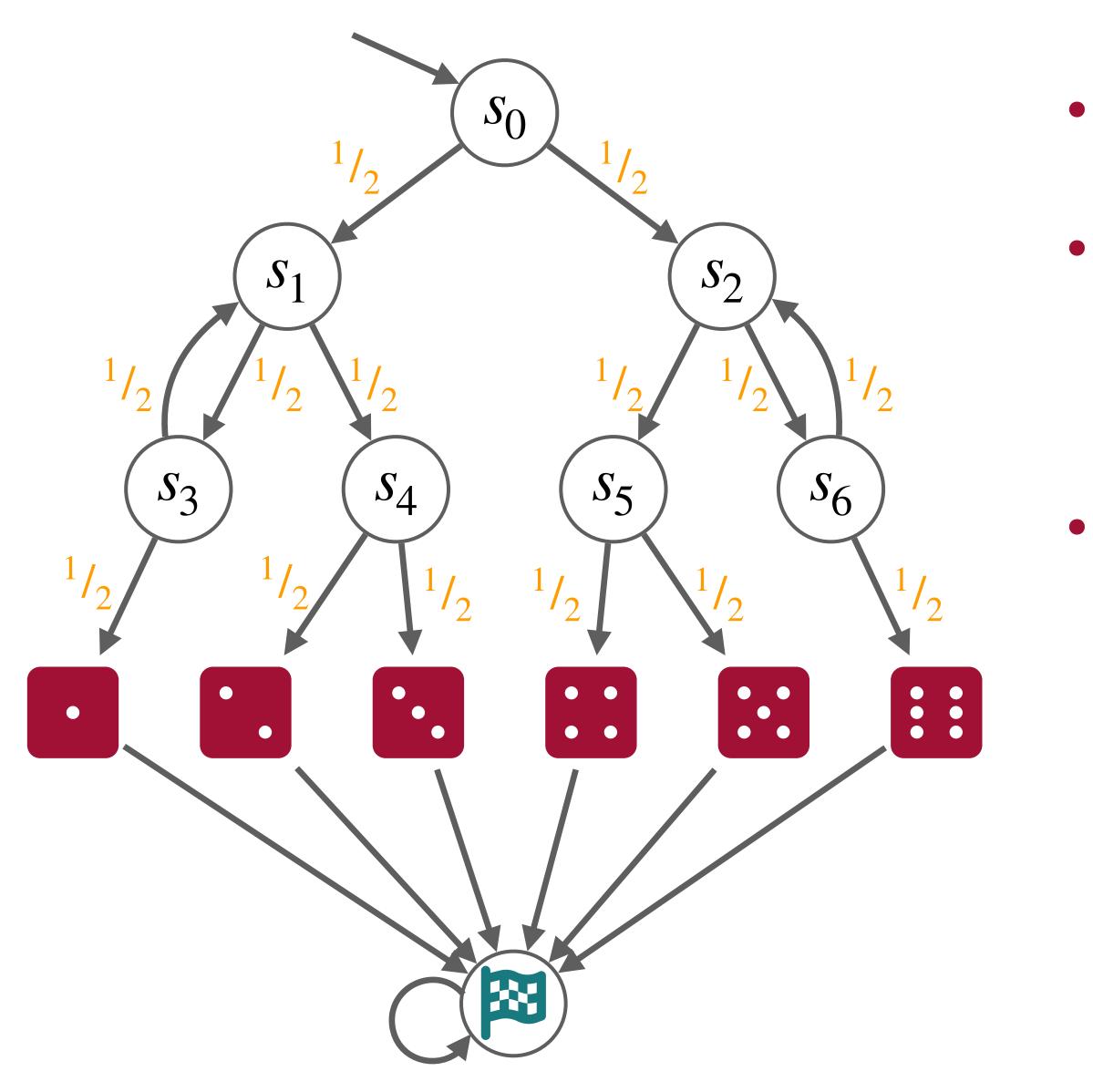
Simulate 6-sided dice by a 2-sided coin

Verify that the distribution is indeed uniform

 Traditional approach: compute reachability probabilities for each outcome

• i.e. solve **six** equation systems

Kuth-Yao's Dice



Tim Quatmann Current MOVES in Probabilistic Model Checking

Simulate 6-sided dice by a 2-sided coin

Verify that the distribution is indeed uniform

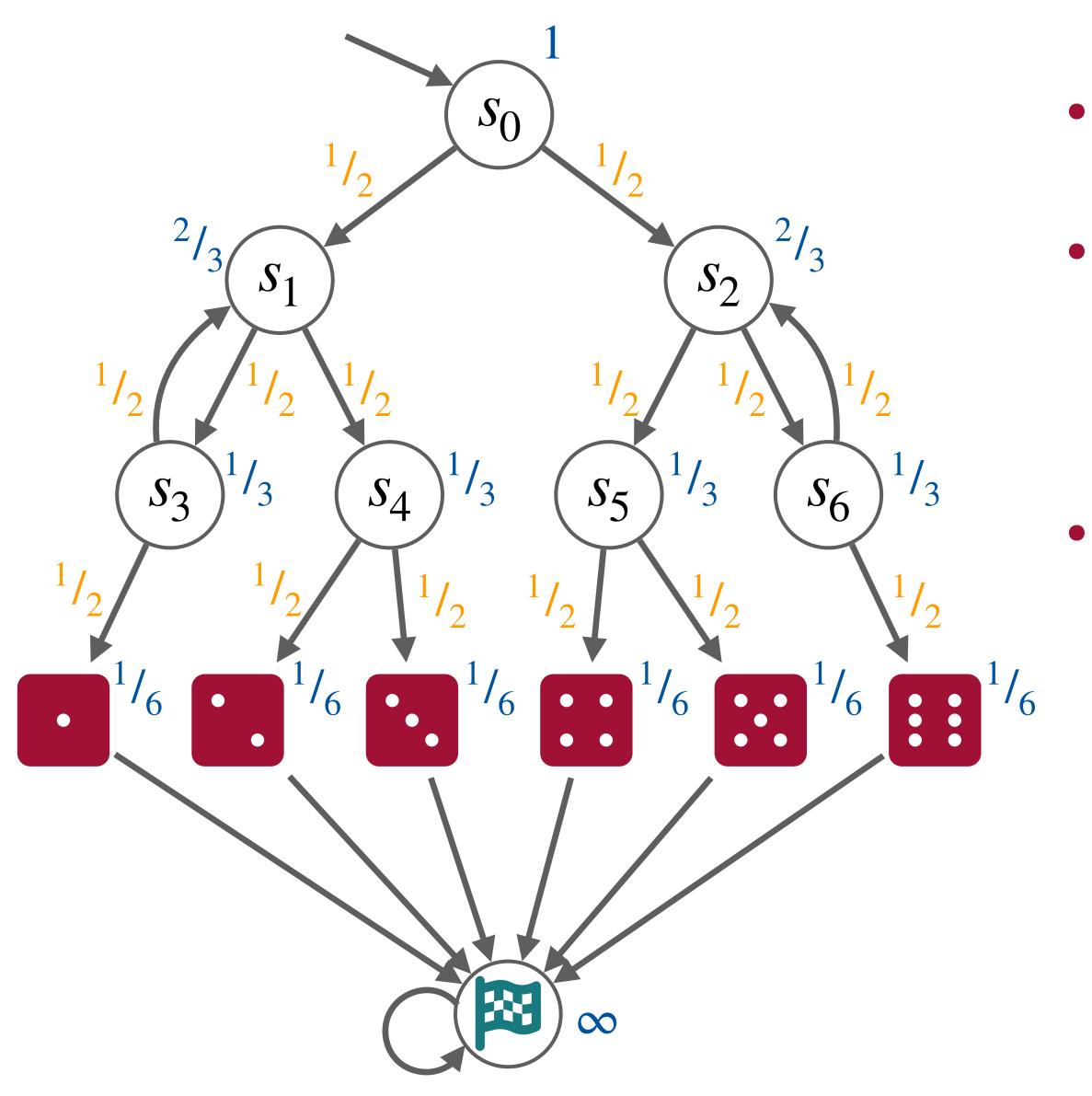
 Traditional approach: compute reachability probabilities for each outcome

• i.e. solve **six** equation systems

Alternative: Expected Visiting Times (EVTs)

Requires solving a single equation system

Kuth-Yao's Dice



Tim Quatmann Current MOVES in Probabilistic Model Checking

Simulate 6-sided dice by a 2-sided coin

Verify that the distribution is indeed uniform

 Traditional approach: compute reachability probabilities for each outcome

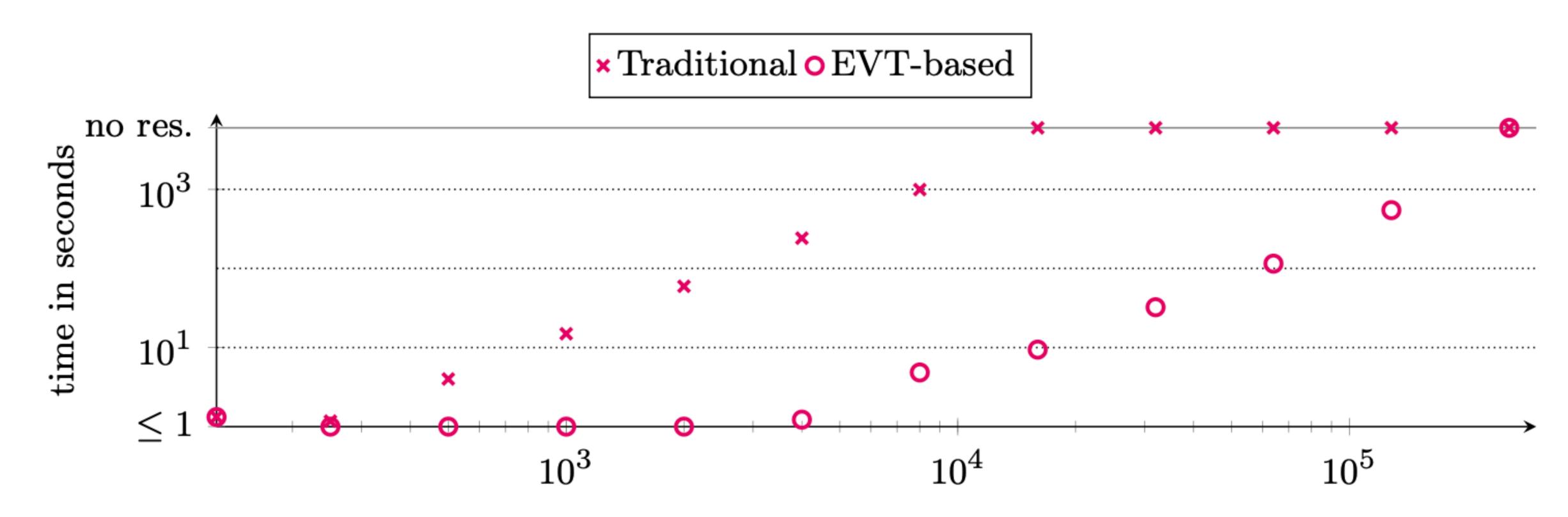
• i.e. solve **six** equation systems

Alternative: Expected Visiting Times (EVTs)

Requires solving a single equation system

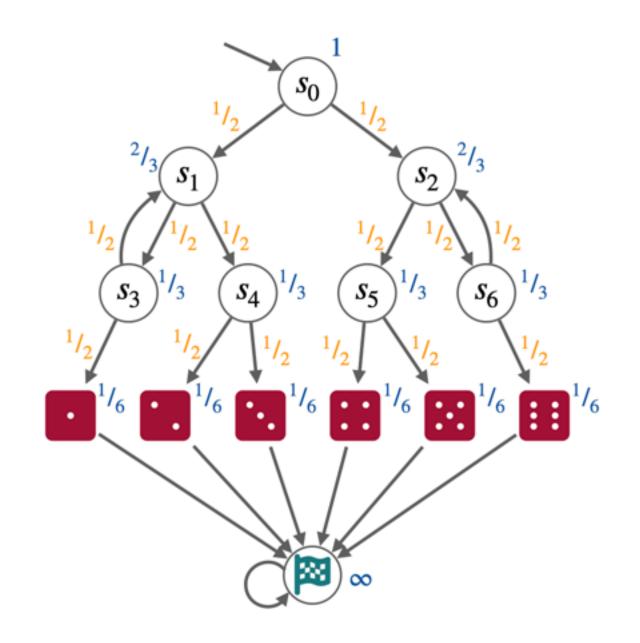
Computing Expected Visiting Times

Benchmarks on Lumbroso's N-sided Dice Roller — powered by Storm ζ_{II}



Current Developments @i2

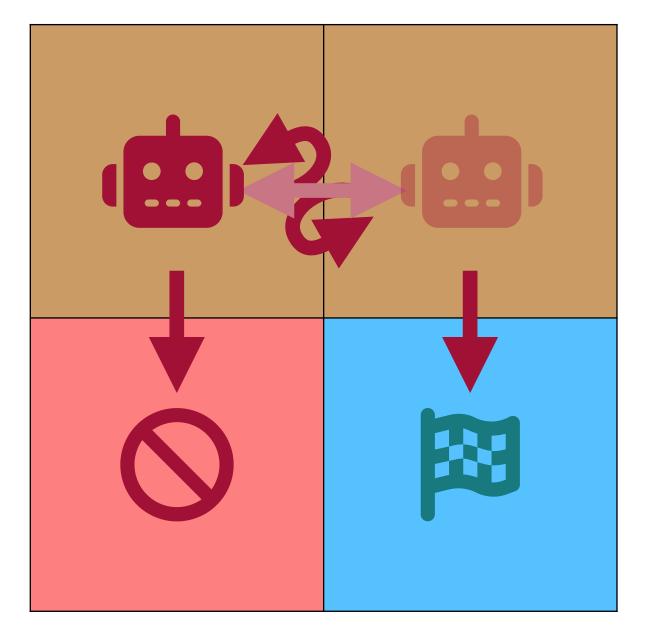
- Sound approximative methods for EVTs
 - Interval Iteration
 - Optimistic Value Iteration
- Connection to Steady State Analysis
- Preservation under backward bisimulation



Upper bounds on minimal reachabi $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \le x$ Upper bounds on maximal reachabi $x \in [0, 1]^S$ $\mathcal{B}^{\max}(x) \leq x$ Lower bounds on minimal reachabil $\mathcal{B}^{\min}(x) \ge x$ $x \in [0, 1]^2$ $\mathcal{D}^{\max}(r) \leq r$ $x(s) > 0 \implies r(s) < \infty$ Lower bounds on maximal reachabi $\mathcal{B}^{\max}(x) \ge x$ $x \in [0, 1]^S$ $r \in \overline{\mathbb{N}}^{\mathbb{Z}}$ $\mathcal{D}_{x\uparrow}^{\min}(r) \le r$ $x(s) > 0 \implies r(s) < \infty$

Expected **Visiting Times**

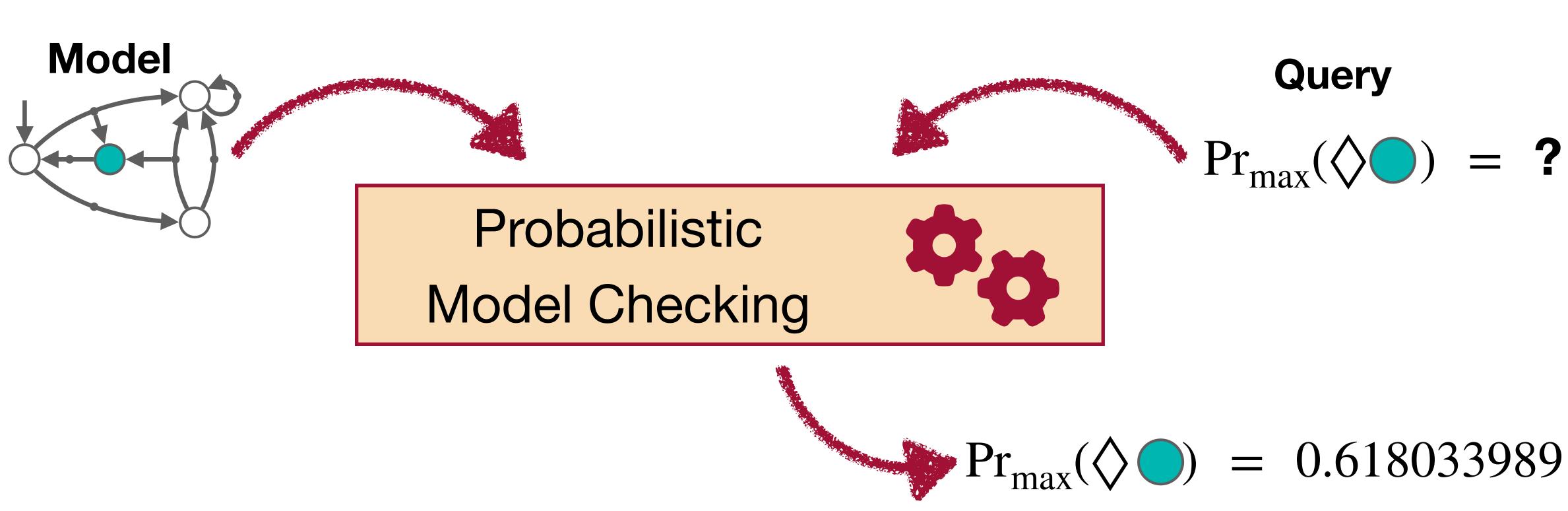
Tim Quatmann Current *MOVES* in Probabilistic Model Checking



Certificates

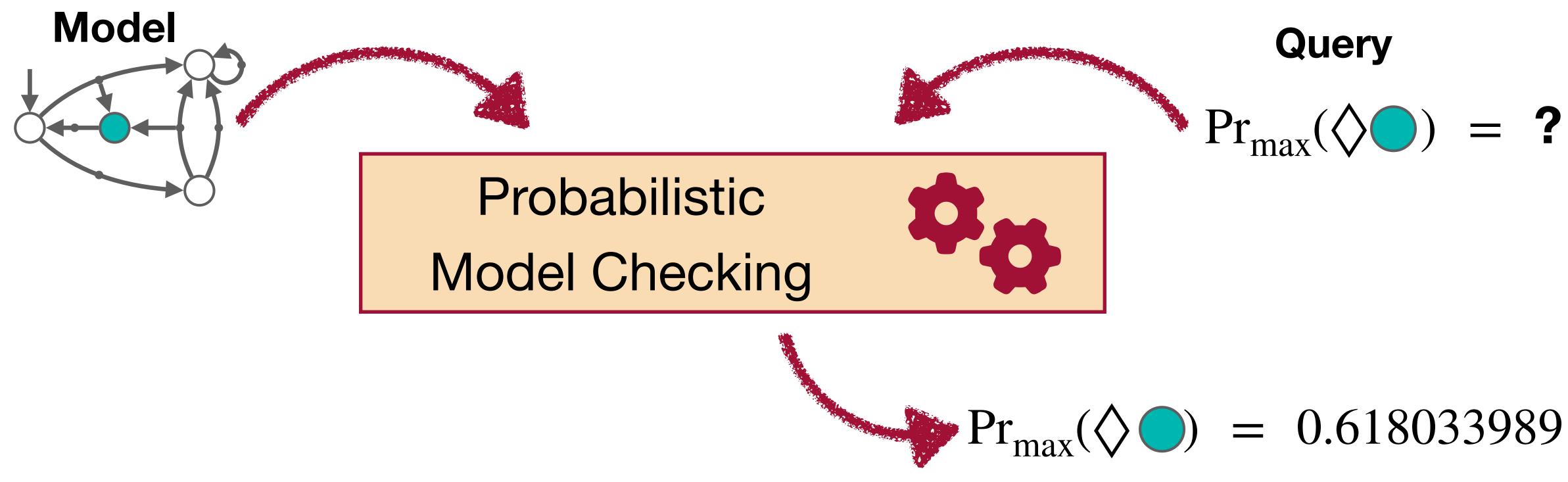
Partially **Observable MDPS**

Can the model checking result be trusted?



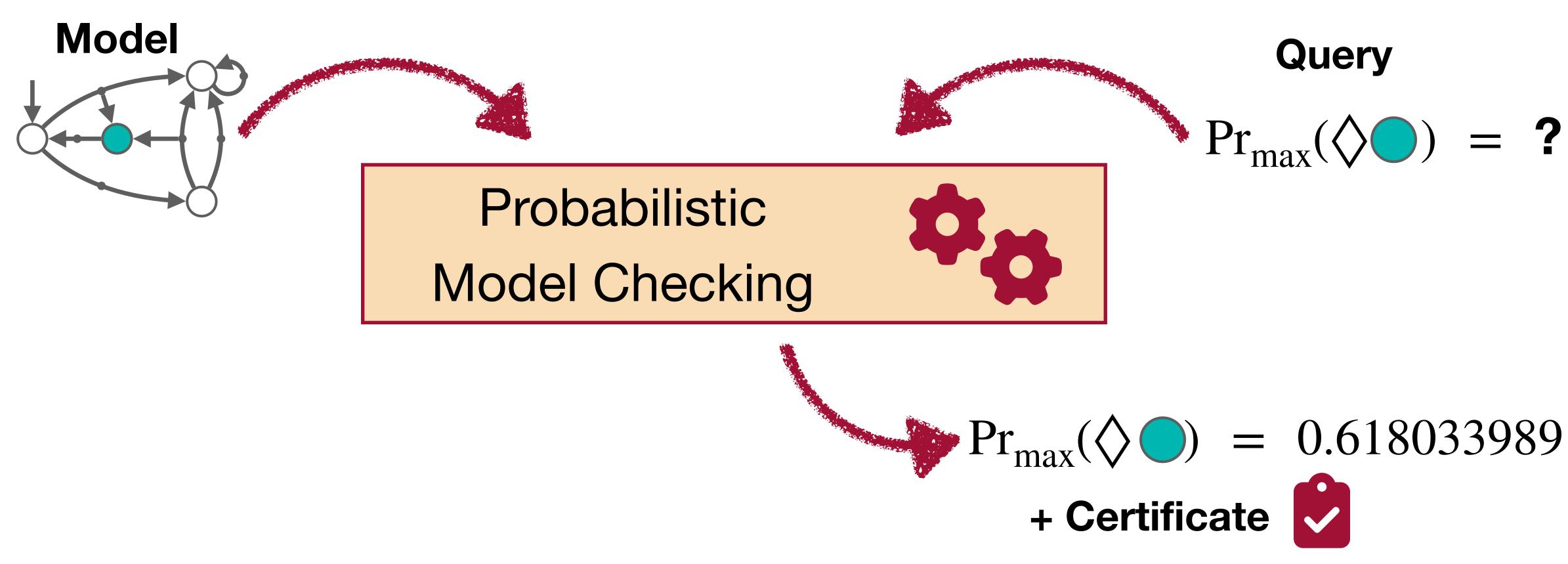
Can the model checking result be trusted? NO!

- Approximative algorithms / floating point inaccuracies
- Implementation bugs



Remedy: Certificates

- Easy to check for validity
- Certificate valid \implies Result correct



Remedy: Certificates

Certificate Condition(s)

Explanation

Upper bounds on **minimal** reachability probabilities: $\forall s \in S : \mathbb{P}_s^{\min}(\Diamond T) \leq x(s)$ $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \le x$

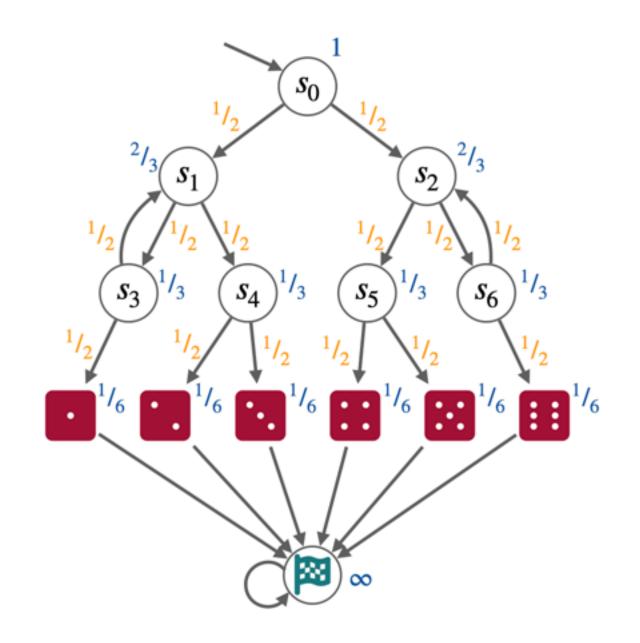
[Proposition 3] min-Bellman operator decreases value of all states

Remedy: Certificates

Certificate Condition(s)

Upper bounds on **minimal** reachability probabilities: $\forall s \in S : \mathbb{P}_s^{\min}(\Diamond T) \leq x(s)$ [Proposition 3] $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \le x$ min-Bellman operator decreases value of all states **Upper** bounds on maximal reachability probabilities: $\forall s \in S : \mathbb{P}_s^{\max}(\Diamond T) \leq x(s)$ [Proposition 3] $x \in [0,1]^S$ $\mathcal{B}^{\max}(x) \le x$ max-Bellman operator decreases value of all states **Lower** bounds on **minimal** reachability probabilities: $\forall s \in S : \mathbb{P}_s^{\min}(\Diamond T) \ge x(s)$ [Proposition 4] $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \ge x$ min-Bellman operator increases value of all states $r \in \overline{\mathbb{N}}^S$ $\mathcal{D}^{\max}(r) \leq r$ r upper bounds **maximal** distances to T $x(s)>0 \implies r(s)<\infty$ positive reachability necessitates finite distance Lower bounds on maximal reachability probabilities: $\forall s \in S : \mathbb{P}_s^{\max}(\Diamond T) \ge x(s)$ [Proposition 6] $x \in [0, 1]^{S}$ $\mathcal{B}^{\max}(x) \ge x$ max-Bellman operator increases value of all states $r \in \overline{\mathbb{N}}^S$ $\mathcal{D}_{x\uparrow}^{\min}(r) \leq r$ r upper bounds min. distances to T via x-incr. actions $x(s)>0 \implies r(s)<\infty$ positive reachability necessitates finite distance

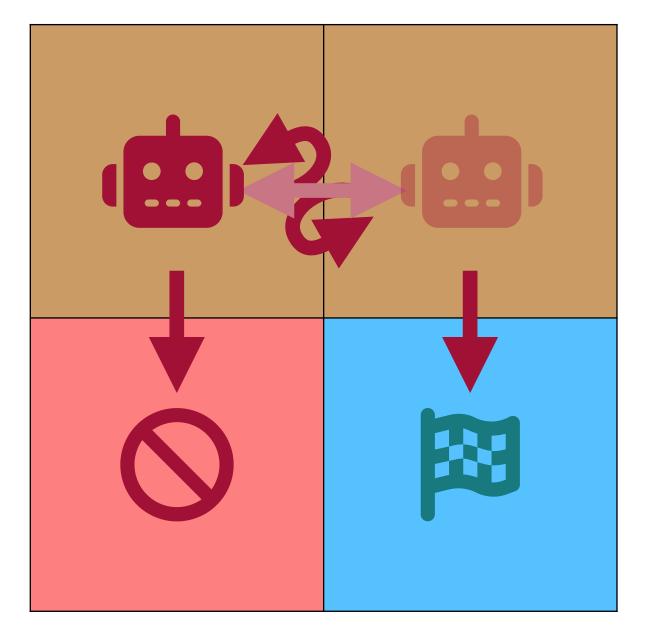
Explanation



Upper bounds on minimal reachabi $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \le x$ Upper bounds on maximal reachabi $x \in [0, 1]^S$ $\mathcal{B}^{\max}(x) \leq x$ Lower bounds on minimal reachabil $\mathcal{B}^{\min}(x) \ge x$ $x \in [0, 1]^2$ $\mathcal{D}^{\max}(r) \leq r$ $x(s) > 0 \implies r(s) < \infty$ Lower bounds on maximal reachabi $\mathcal{B}^{\max}(x) \ge x$ $x \in [0, 1]^S$ $r \in \overline{\mathbb{N}}^{2}$ $\mathcal{D}_{x\uparrow}^{\min}(r) \le r$ $x(s) > 0 \implies r(s) < \infty$

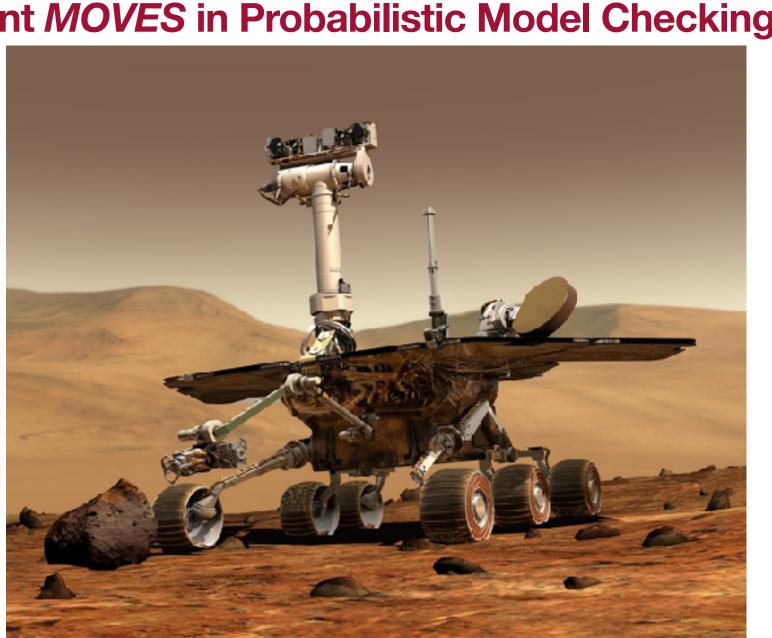
Expected **Visiting Times**

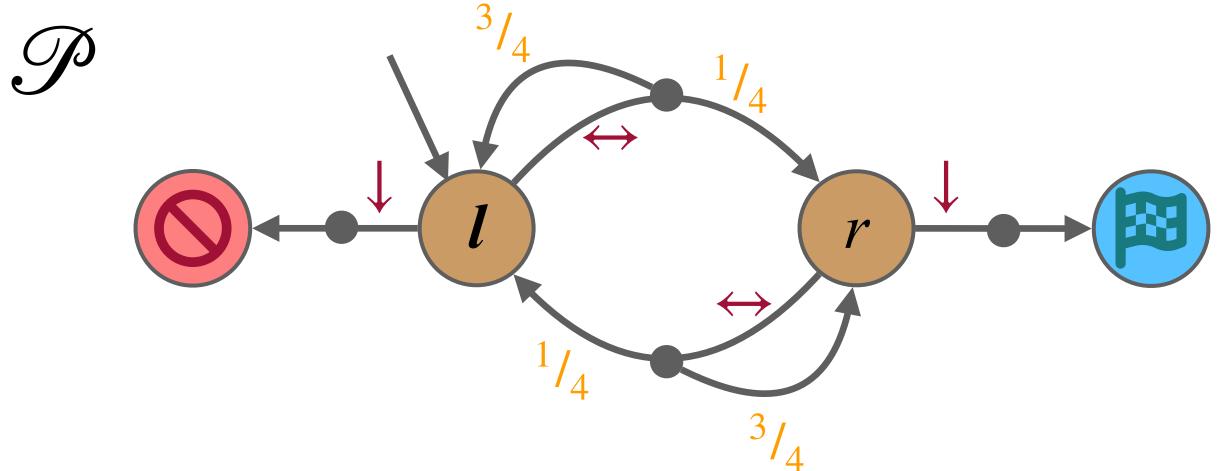
Tim Quatmann Current *MOVES* in Probabilistic Model Checking

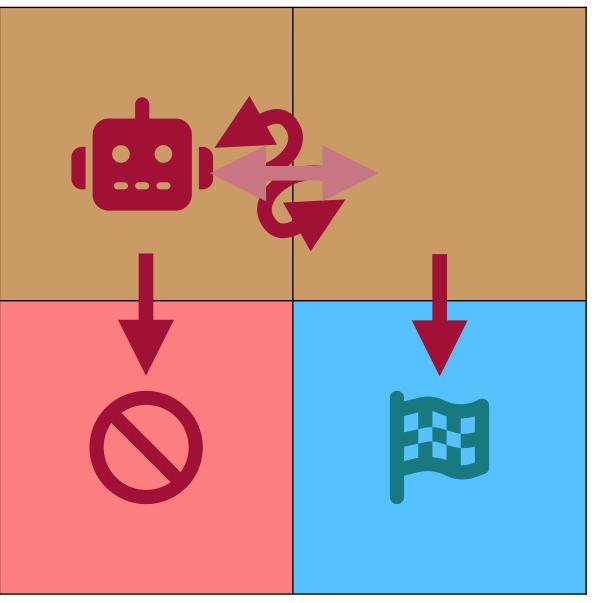


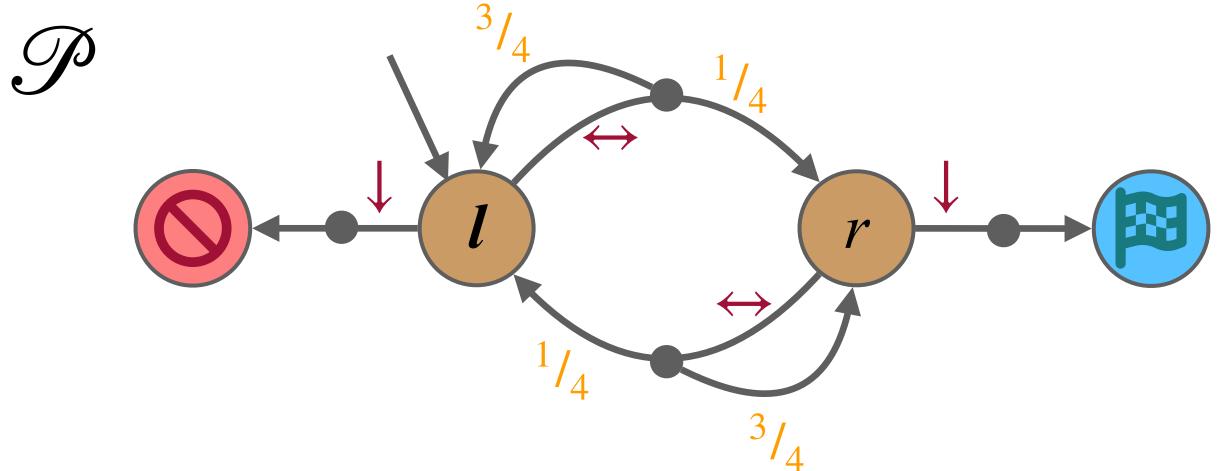
Certificates

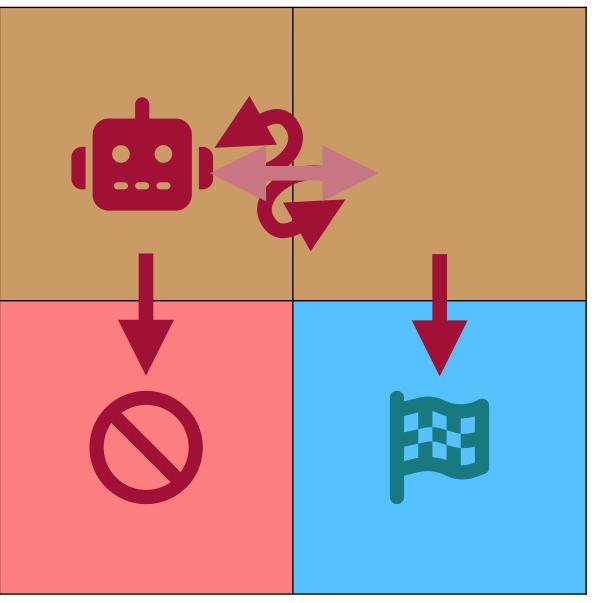
Partially **Observable MDPS**

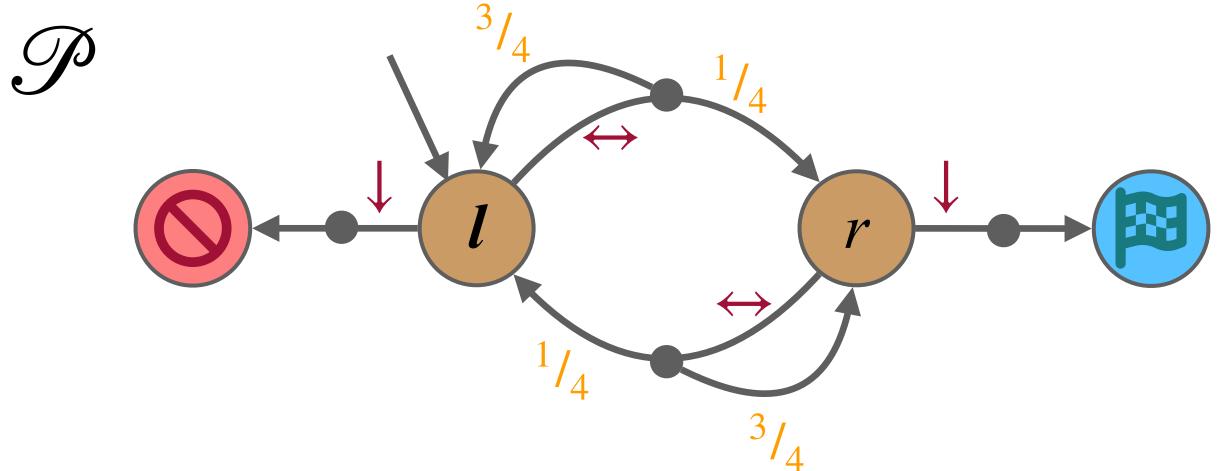


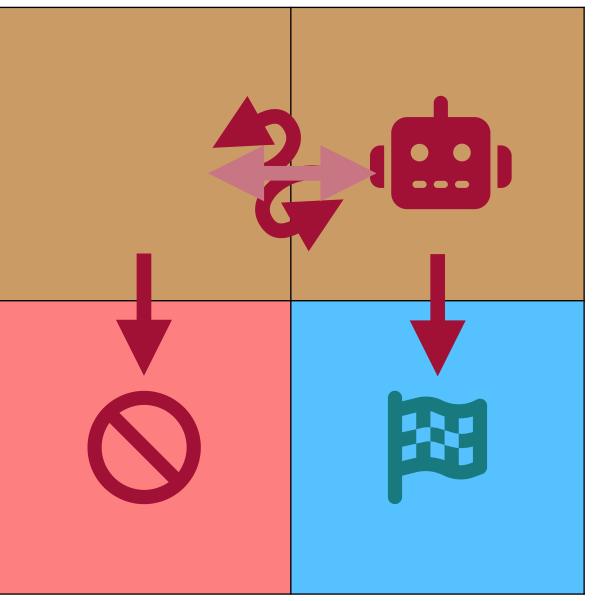


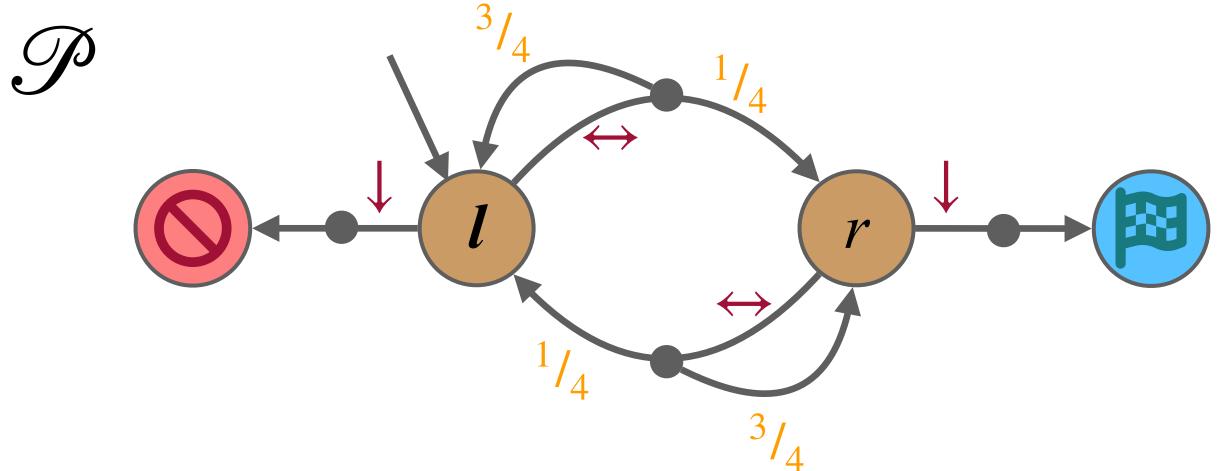


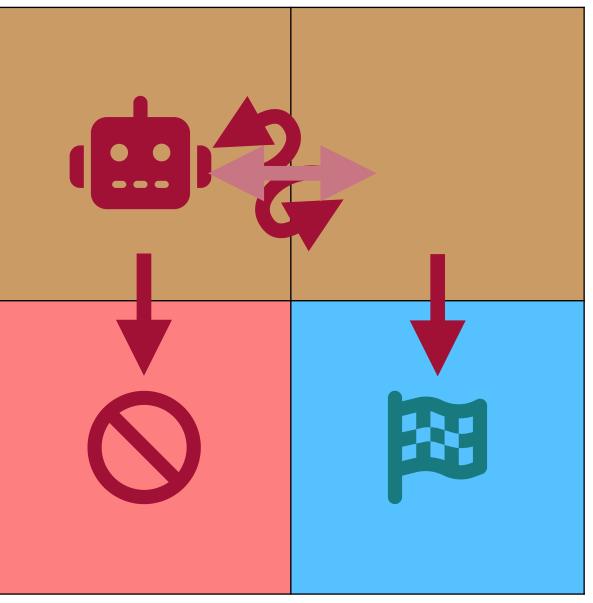


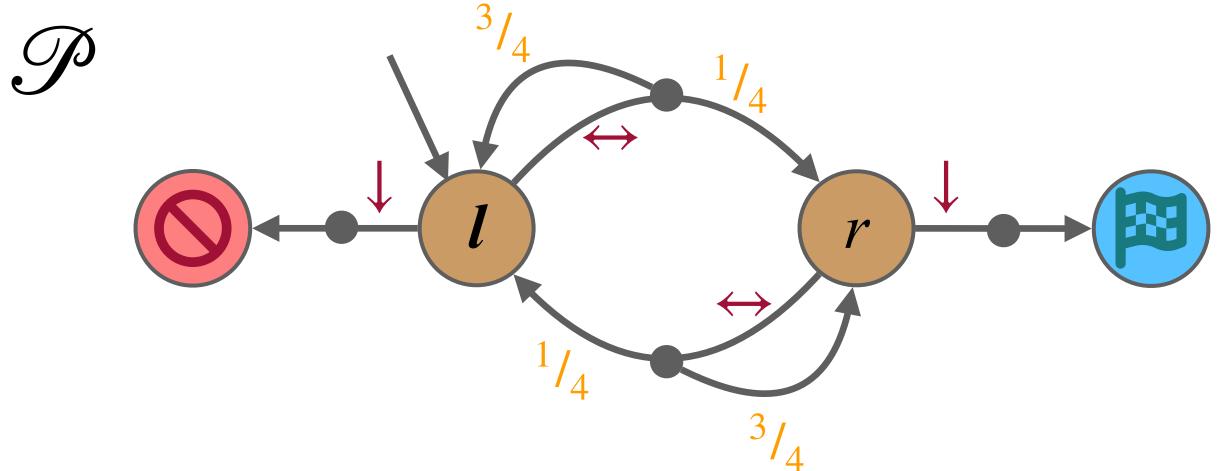


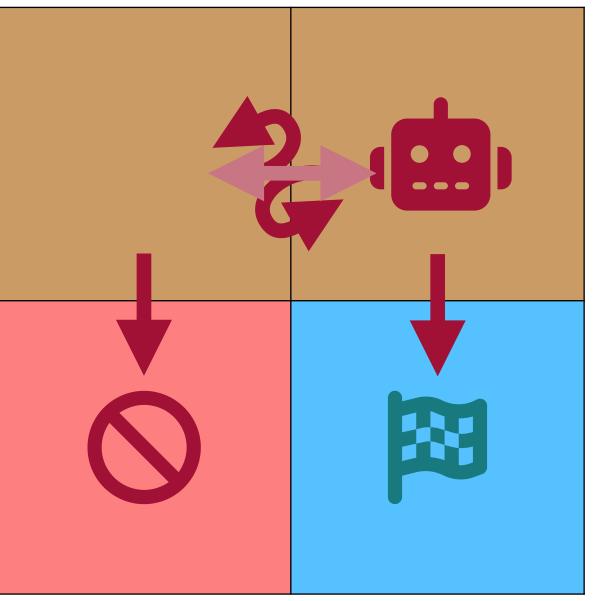


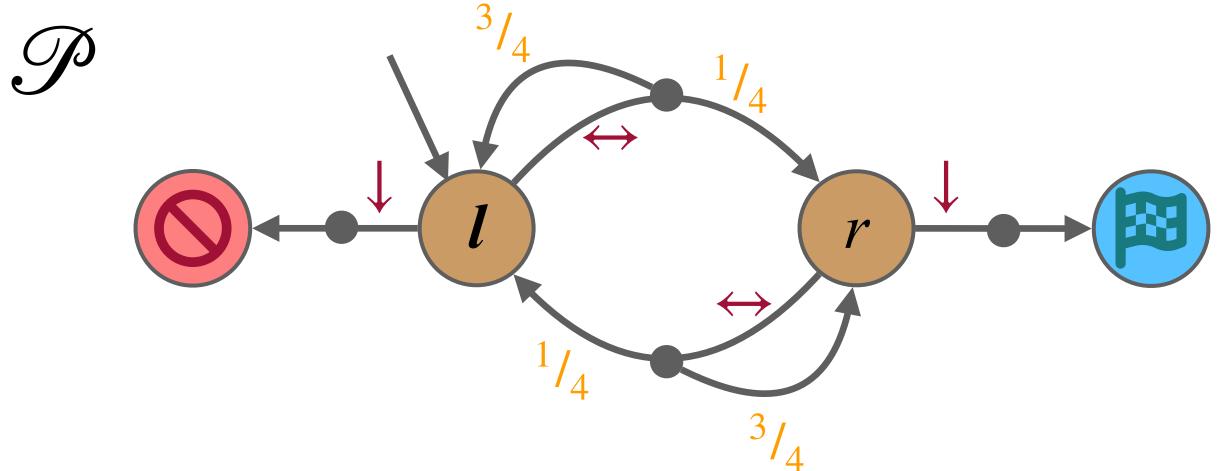


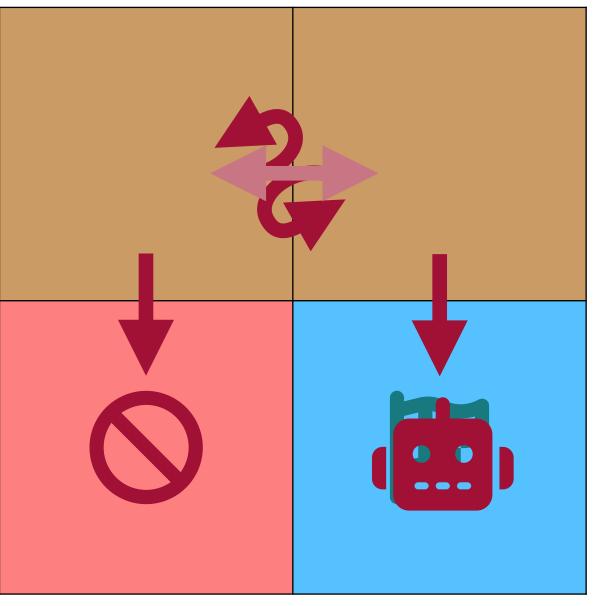


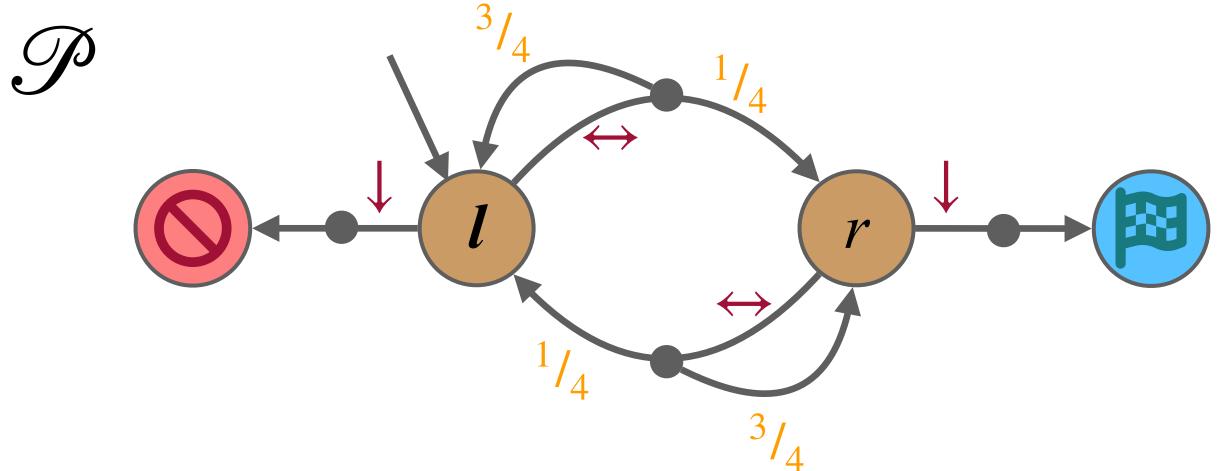


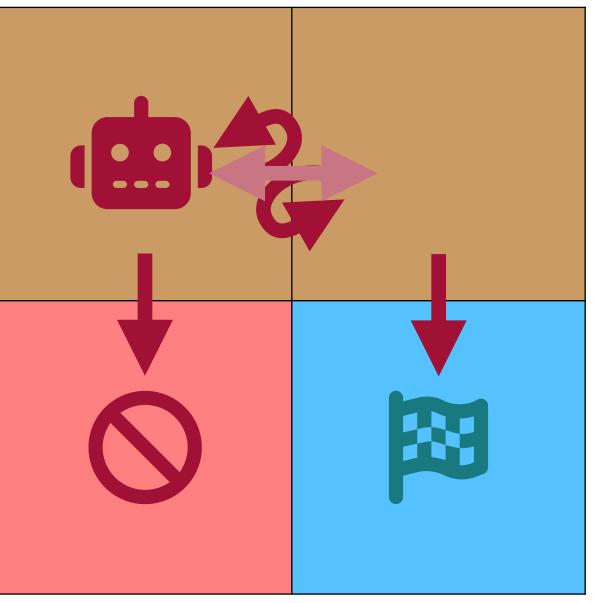


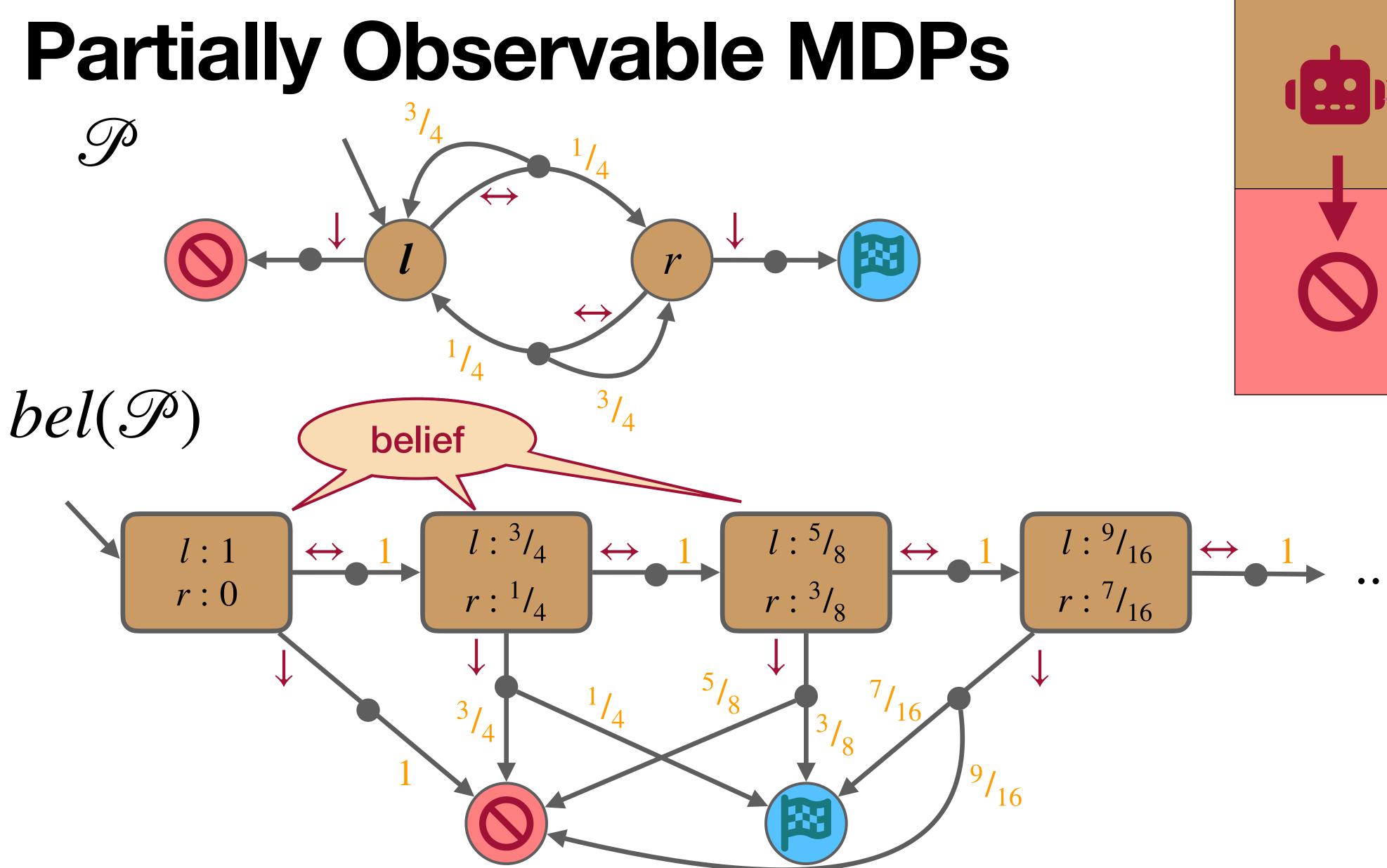


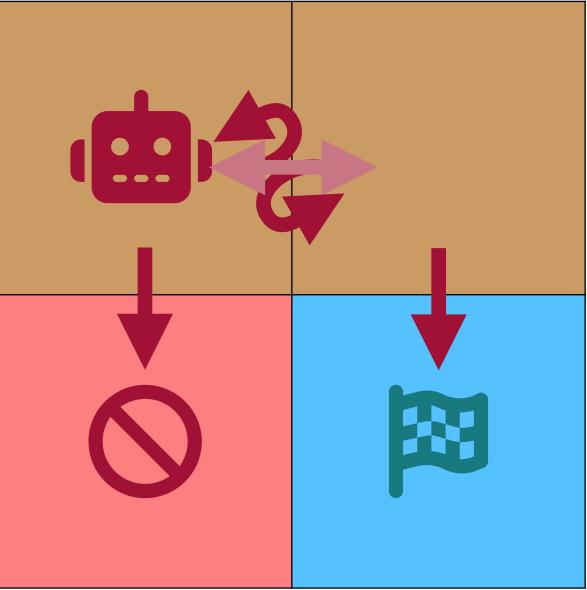


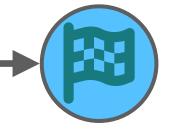












Current Developments @i2

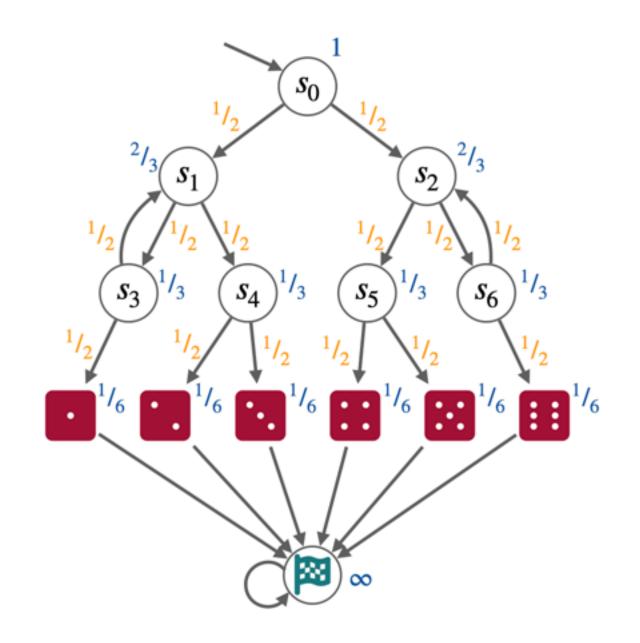
- Cost-bounded reachability for POMDPs
 - Probability to reach (B) within a given time and energy budget

Current Developments @i2

- Cost-bounded reachability for POMDPs
 - Probability to reach (within a given time and energy budget

Investigate properties of similar belies

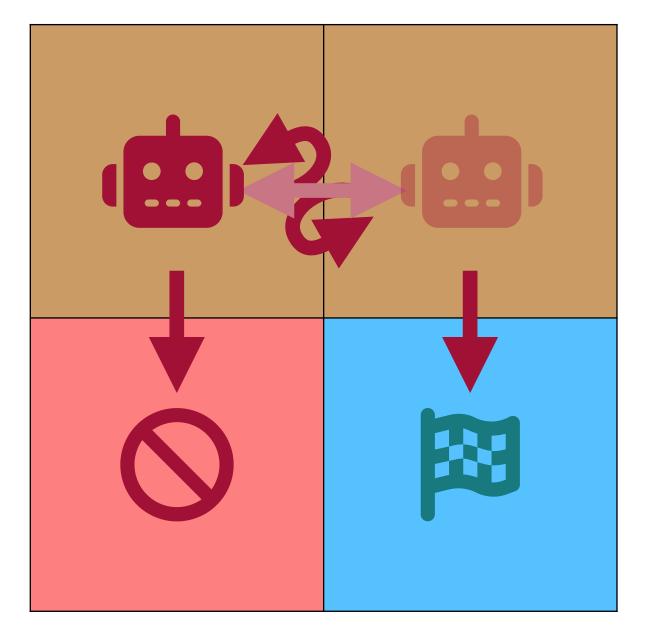
efs
$$l: 0.75 \\ r: 0.25 \end{cases} \approx \begin{bmatrix} l: 0.7499 \\ r: 0.2501 \end{bmatrix}$$



Upper bounds on minimal reachabi $x \in [0,1]^S$ $\mathcal{B}^{\min}(x) \le x$ Upper bounds on maximal reachabi $x \in [0, 1]^S$ $\mathcal{B}^{\max}(x) \leq x$ Lower bounds on minimal reachabil $\mathcal{B}^{\min}(x) \ge x$ $x \in [0, 1]^2$ $\mathcal{D}^{\max}(r) \leq r$ $x(s) > 0 \implies r(s) < \infty$ Lower bounds on maximal reachabi $\mathcal{B}^{\max}(x) \ge x$ $x \in [0, 1]^S$ $r \in \overline{\mathbb{N}}^{2}$ $\mathcal{D}_{x\uparrow}^{\min}(r) \le r$ $x(s) > 0 \implies r(s) < \infty$

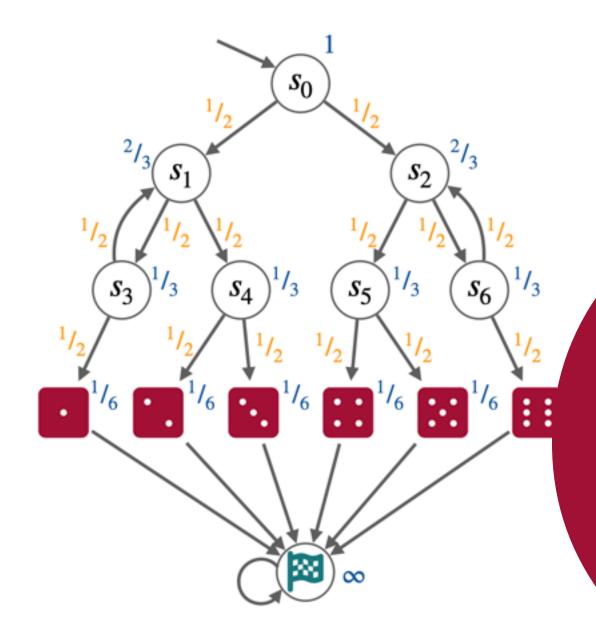
Expected **Visiting Times**

Tim Quatmann Current *MOVES* in Probabilistic Model Checking

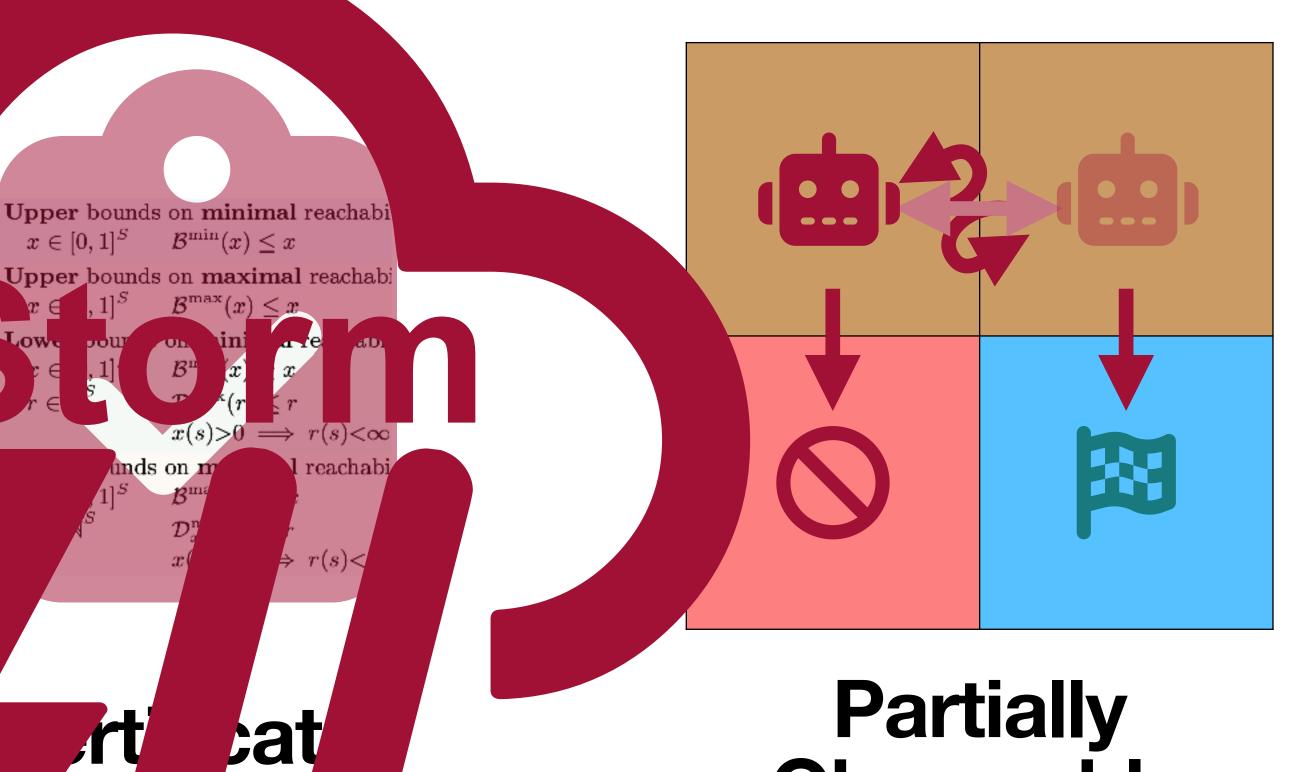


Certificates

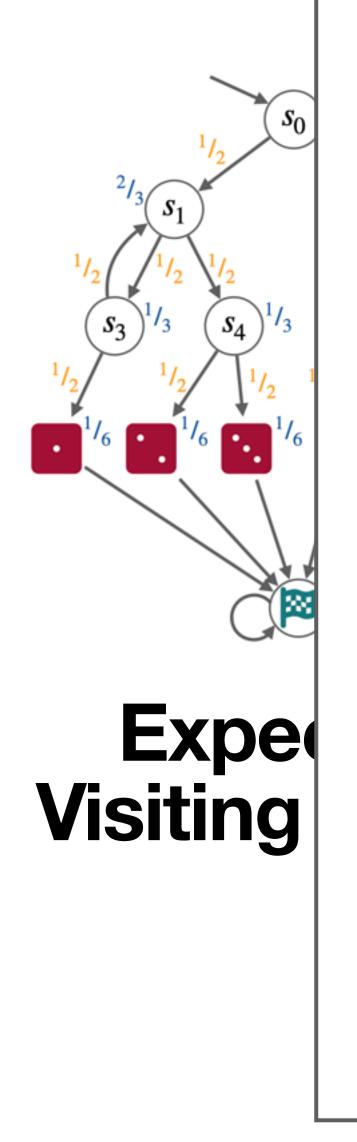
Partially **Observable MDPS**



Expected Visiting Times **Tim Quatmann** Current MOVES in Probabilistic Model Checking



Observable **MDPS**



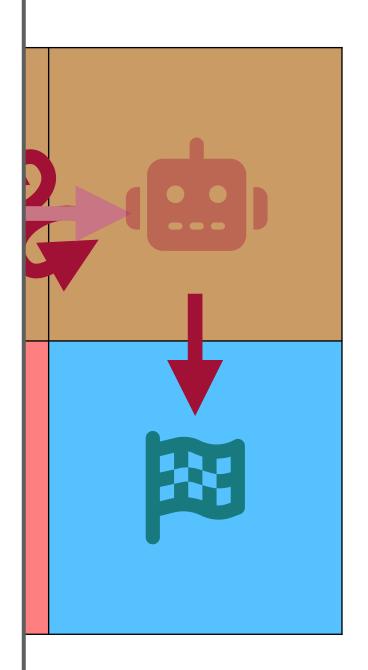
Riding the Storm in a Probabilistic Model Checking Landscape*

Christian Hensel, Sebastian Junges¹^(D), Tim Quatmann², and Matthias Volk³

Radboud University, Nijmegen, the Netherlands sebastian.junges@ru.nl ² RWTH Aachen University, Aachen, Germany Eindhoven University of Technology, Eindhoven, the Netherlands З

Abstract. Probabilistic model checking is a formal verification technique to check whether stochastic models satisfy properties of interest. Along with a rich theory, the community has developed mature tool support, which in turn has been applied to a set of industrial case studies. This paper demonstrates various abilities of the probabilistic model checker Storm by a set of simple and more accessible examples.

Tim Quatmann Current MOVES in Probabilistic Model Checking



tially rvable)PS

